II B. Tech I Semester Supplementary Examinations, May/June - 2016
 SURVEYING
 (Civil Engineering)

Time: 3 hours

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
 2. Answer ALL the question in Part-A
 3. Answer any THREE Questions from Part-B

PART -A

1. a) What are the survey stations?
b) What is the purpose of traversing?
c) Define reciprocal leveling
d) How will you find the constants of a tacheometer?
e) What is meant by Degree of curve?
f) Write the method of a computation of volume of earthwork

PART -B

2. a) Differentiate clearly between plane and geodetic surveying.
b) Distinguish clearly between cumulative and compensative errors.
3. A nominal distance of 30 m was set out with a 30 m steel tape from a mark on the top of one peg to a mark on the top of another, the tape being in catenary under a pull of 10 kg and at a mean temperature of $70^{\circ} \mathrm{F}$. The top of one peg was 0.25 m below the top of other. The top of higher peg was 460 m above mean sea level. Calculate the exact horizontal distance between the marks on the two pegs and reduce it to mean sea level, if the tape was standardized at a temperature of $60^{\circ} \mathrm{F}$, in catenary, under a pull of a) 8 Kg , (b) 12 Kg , (c) 10 Kg .
Take radius of earth $=6370 \mathrm{Km}$
Density of tape $=7.86 \mathrm{~g} / \mathrm{cm}^{3}$.
4. a) Differentiate between permanent and temporary adjustments of level.
b) Discuss the effects of curvature and refraction in levelling. Find the correction due to each and the combined correction.
5. Explain how would you measure with theodolite:
a) Horizontal angle by repetition
b) Vertical angle
c) Magnetic bearing of line.
6. Calculate the reduced levels of the various station pegs on a vertical curve connecting two uniform grades of $+0.5 \%$ and -0.7%. The Chainage and the reduced level of the point of intersection are 500 m and 330.750 m respectively. Take the rate of change of grade as 0.1% per 30m.
7. Derive an expression for trapezoidal formula for volume. Compare it with the prismoidal formula.
